Ex. 4 - Generating cluster samples

library(lsasim)
packageVersion("lsasim")
[1] '2.1.5'

Generating background questionnaire data

cluster_gen(n, N = 1, cluster_labels = NULL, resp_labels = NULL, cat_prop = NULL, n_X = NULL,
    n_W = NULL, c_mean = NULL, sigma = NULL, cor_matrix = NULL, separate_questionnaires = TRUE,
    collapse = "none", sum_pop = sapply(N, sum), calc_weights = TRUE, sampling_method = "mixed",
    rho = NULL, theta = FALSE, verbose = TRUE, print_pop_structure = verbose)

As its single mandatory argument, cluster_gen requires a numeric list or vector containing the hierarchical structure of the data. As a general rule, as far as this first argument (n) as well as the second argument (N, representing the population structure) are concerned, vectors can be used to represent symmetric structures and lists can be used for asymmetric structures. What follows are some examples.

The function cluster_gen generates clustered samples which resembles the composition of international large-scale assessments participants. The required argument is n and the other optional arguments include


Example 1

We can specify a simple structure of 3 schools with 5 students in each school. That is, n = 3 and N = 5.

set.seed(4388)
cg <- cluster_gen(c(n = 3, N = 5))
── Hierarchical structure ────────────────────────────────────────────────────────────────
n1 (5 Ns)
n2 (5 Ns)
n3 (5 Ns)
── Information on sampling weights ───────────────────────────────────────────────────────
cg$n[[1]]
  subject         q1          q2         q3 q4 q5 q6 q7 q8 n.weight within.n.weight
1       1 -0.7985768  0.55776842  0.9278102  1  1  4  2  1        1               1
2       2 -1.0486078  2.28259560 -0.2269337  3  1  1  2  3        1               1
3       3 -0.1680413 -0.02049366 -0.7900484  3  1  3  2  1        1               1
4       4  1.4115562 -1.12757547  1.6993672  2  4  3  2  4        1               1
5       5  0.6689374 -1.51117001 -0.1845164  3  4  4  2  2        1               1
  final.N.weight uniqueID
1              1    N1_n1
2              1    N2_n1
3              1    N3_n1
4              1    N4_n1
5              1    N5_n1
cg$n[[2]]
  subject          q1         q2         q3 q4 q5 q6 q7 q8 n.weight within.n.weight
1       1  0.83893595  0.4238664 -0.7212927  2  1  2  1  1        1               1
2       2  0.07260641 -0.3279862 -0.3841153  2  3  4  2  1        1               1
3       3  0.61013495 -1.1129113 -0.6149362  2  2  4  2  1        1               1
4       4 -2.53529525  0.2130771  2.3516784  3  5  1  1  2        1               1
5       5  0.46853204 -0.1806199 -0.4231896  2  3  1  1  4        1               1
  final.N.weight uniqueID
1              1    N1_n2
2              1    N2_n2
3              1    N3_n2
4              1    N4_n2
5              1    N5_n2
cg$n[[3]]
  subject         q1         q2         q3 q4 q5 q6 q7 q8 n.weight within.n.weight
1       1 -1.9544485 -0.7390583 -2.1217731  1  1  1  1  1        1               1
2       2  1.1813684 -0.4654562  0.7780397  3  4  4  1  4        1               1
3       3 -0.4846220  0.5223044 -0.4788684  1  1  1  2  2        1               1
4       4  1.4972177 -0.5354472 -0.4295909  3  1  1  1  2        1               1
5       5  0.0806642 -1.6934998  0.8183471  1  1  4  1  4        1               1
  final.N.weight uniqueID
1              1    N1_n3
2              1    N2_n3
3              1    N3_n3
4              1    N4_n3
5              1    N5_n3

Example 2

We can specify a more complex structure of 2 schools with different numbers of students, sampling weights, and custom numbers of questions.

set.seed(4388)
n <- list(3, c(20, 15, 25))
N <- list(5, c(200, 500, 400, 100, 100))
cg <- cluster_gen(n, N, n_X = 5, n_W = 2)
── Hierarchical structure ────────────────────────────────────────────────────────────────
school1 (200 students)
school2 (500 students)
school3 (400 students)
school4 (100 students)
school5 (100 students)
school1 (20 students)
school2 (15 students)
school3 (25 students)
── Information on sampling weights ───────────────────────────────────────────────────────
str(cg$school[[1]])
'data.frame':   20 obs. of  12 variables:
 $ subject             : int  1 2 3 4 5 6 7 8 9 10 ...
 $ q1                  : num  -1.351 -0.249 0.241 1.178 -0.104 ...
 $ q2                  : num  -0.672 -0.849 1.678 -0.22 1.848 ...
 $ q3                  : num  0.175 -0.901 0.961 0.364 1.401 ...
 $ q4                  : num  0.0527 0.4653 -0.8303 -0.7196 0.1548 ...
 $ q5                  : num  -0.2185 -0.0847 1.2169 -1.363 -1.1152 ...
 $ q6                  : Factor w/ 2 levels "1","2": 2 1 2 1 2 2 1 1 1 2 ...
 $ q7                  : Factor w/ 5 levels "1","2","3","4",..: 1 2 4 5 5 3 1 4 5 5 ...
 $ school.weight       : num  2.17 2.17 2.17 2.17 2.17 ...
 $ within.school.weight: num  10 10 10 10 10 10 10 10 10 10 ...
 $ final.student.weight: num  21.7 21.7 21.7 21.7 21.7 ...
 $ uniqueID            : chr  "student1_school1" "student2_school1" "student3_school1" "student4_school1" ...
str(cg$school[[2]])
'data.frame':   15 obs. of  12 variables:
 $ subject             : int  1 2 3 4 5 6 7 8 9 10 ...
 $ q1                  : num  0.548 -0.51 0.373 0.527 0.163 ...
 $ q2                  : num  0.0978 -1.6416 0.2355 0.4376 0.0315 ...
 $ q3                  : num  1.574 0.512 0.49 1.264 -0.279 ...
 $ q4                  : num  -0.646 -1.127 -0.39 0.119 -1.174 ...
 $ q5                  : num  0.27 0.466 -0.134 -0.326 -0.153 ...
 $ q6                  : Factor w/ 2 levels "1","2": 2 1 2 1 1 2 2 1 2 2 ...
 $ q7                  : Factor w/ 3 levels "1","2","4": 1 2 2 2 2 3 1 1 3 2 ...
 $ school.weight       : num  0.867 0.867 0.867 0.867 0.867 ...
 $ within.school.weight: num  33.3 33.3 33.3 33.3 33.3 ...
 $ final.student.weight: num  28.9 28.9 28.9 28.9 28.9 ...
 $ uniqueID            : chr  "student1_school2" "student2_school2" "student3_school2" "student4_school2" ...
str(cg$school[[3]])
'data.frame':   25 obs. of  12 variables:
 $ subject             : int  1 2 3 4 5 6 7 8 9 10 ...
 $ q1                  : num  1.405 0.273 -0.911 0.237 -0.35 ...
 $ q2                  : num  -1.4873 0.5872 0.8679 0.5469 -0.0578 ...
 $ q3                  : num  -0.987 -0.034 -2.169 0.486 -0.273 ...
 $ q4                  : num  -0.95 -0.143 0.692 -0.853 0.761 ...
 $ q5                  : num  0.965 -0.707 0.578 0.197 -0.944 ...
 $ q6                  : Factor w/ 2 levels "1","2": 1 1 2 1 2 1 1 1 1 1 ...
 $ q7                  : Factor w/ 4 levels "1","2","3","4": 1 4 4 4 2 4 4 4 4 1 ...
 $ school.weight       : num  1.08 1.08 1.08 1.08 1.08 ...
 $ within.school.weight: num  16 16 16 16 16 16 16 16 16 16 ...
 $ final.student.weight: num  17.3 17.3 17.3 17.3 17.3 ...
 $ uniqueID            : chr  "student1_school3" "student2_school3" "student3_school3" "student4_school3" ...

Example 3

We can also control the intra-class correlations and the grand mean.

set.seed(4388)
cg <- cluster_gen(c(5, 1000), rho = 0.9, n_X = 2, n_W = 0, c_mean = 10)
── Hierarchical structure ────────────────────────────────────────────────────────────────
school1 (1000 students)
school2 (1000 students)
school3 (1000 students)
school4 (1000 students)
school5 (1000 students)
── Information on sampling weights ───────────────────────────────────────────────────────
sapply(1:5, function(s) mean(cg$school[[s]]$q1))  # means per school != 10
[1]  4.929322  4.037097 10.849103  6.516552  6.440307
mean(sapply(1:5, function(s) mean(cg$school[[s]]$q1)))  # closer to c_mean
[1] 6.554476
str(cg)
List of 1
 $ school:List of 5
  ..$ :'data.frame':    1000 obs. of  7 variables:
  .. ..$ subject             : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
  .. ..$ q1                  : num [1:1000] 4.79 4.68 3.7 6.23 4.27 ...
  .. ..$ q2                  : num [1:1000] 9.74 9.76 10.94 8.27 10.37 ...
  .. ..$ school.weight       : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ within.school.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ final.student.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ uniqueID            : chr [1:1000] "student1_school1" "student2_school1" "student3_school1" "student4_school1" ...
  ..$ :'data.frame':    1000 obs. of  7 variables:
  .. ..$ subject             : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
  .. ..$ q1                  : num [1:1000] 4.99 2.95 5.69 4.06 5.98 ...
  .. ..$ q2                  : num [1:1000] 4.77 6.1 8.14 5.35 9.23 ...
  .. ..$ school.weight       : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ within.school.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ final.student.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ uniqueID            : chr [1:1000] "student1_school2" "student2_school2" "student3_school2" "student4_school2" ...
  ..$ :'data.frame':    1000 obs. of  7 variables:
  .. ..$ subject             : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
  .. ..$ q1                  : num [1:1000] 10.1 10.3 10.7 13.2 10.4 ...
  .. ..$ q2                  : num [1:1000] 14.5 14.1 14.9 19.3 15.3 ...
  .. ..$ school.weight       : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ within.school.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ final.student.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ uniqueID            : chr [1:1000] "student1_school3" "student2_school3" "student3_school3" "student4_school3" ...
  ..$ :'data.frame':    1000 obs. of  7 variables:
  .. ..$ subject             : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
  .. ..$ q1                  : num [1:1000] 6.59 7.78 5.26 7.74 6.19 ...
  .. ..$ q2                  : num [1:1000] 11.7 10.4 13.6 11.4 12 ...
  .. ..$ school.weight       : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ within.school.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ final.student.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ uniqueID            : chr [1:1000] "student1_school4" "student2_school4" "student3_school4" "student4_school4" ...
  ..$ :'data.frame':    1000 obs. of  7 variables:
  .. ..$ subject             : int [1:1000] 1 2 3 4 5 6 7 8 9 10 ...
  .. ..$ q1                  : num [1:1000] 4.77 6.24 6.04 8.05 6 ...
  .. ..$ q2                  : num [1:1000] 17.6 16.2 18.1 15.4 12 ...
  .. ..$ school.weight       : num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ within.school.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ final.student.weight: num [1:1000] 1 1 1 1 1 1 1 1 1 1 ...
  .. ..$ uniqueID            : chr [1:1000] "student1_school5" "student2_school5" "student3_school5" "student4_school5" ...
 - attr(*, "class")= chr [1:2] "lsasimcluster" "list"

Example 4

We can make the intraclass variance explode by forcing “incompatible” rho and c_mean.

x <- cluster_gen(c(5, 1000), rho = 0.5, n_X = 2, n_W = 0, c_mean = 1:5)
── Hierarchical structure ────────────────────────────────────────────────────────────────
school1 (1000 students)
school2 (1000 students)
school3 (1000 students)
school4 (1000 students)
school5 (1000 students)
── Information on sampling weights ───────────────────────────────────────────────────────
anova(x)
ANOVA estimators
                  Source Sample.statistic Population.estimate
1  Within-group variance         2504.179            2504.179
2 Between-group variance         4853.708            4851.203
3         Total variance         6385.918                  NA

Intraclass correlation
   Estimated Standard.error
q1 0.6595447      0.1589391

Testing for group differences
F-statistic: 1938.243 on 4 and 4995 DF. p-value:  0 
ANOVA estimators
                  Source Sample.statistic Population.estimate
1  Within-group variance         2419.402            2419.402
2 Between-group variance         1117.501            1115.081
3         Total variance         3311.645                  NA

Intraclass correlation
   Estimated Standard.error
q2 0.3154864       0.153111

Testing for group differences
F-statistic: 461.8914 on 4 and 4995 DF. p-value:  0 

  • Other specifications of cluster_gen.

Example 5

The named vector below represents a sampling structure of 1 country, 2 schools, 5 students per school. The naming of the vector is optional.

set.seed(4388)
n <- c(cnt = 1, sch = 2, stu = 5)
cg <- cluster_gen(n = n)
── Hierarchical structure ────────────────────────────────────────────────────────────────
cnt1
├─cnt1_sch1 (5 stus)
└─cnt1_sch2 (5 stus)
── Information on sampling weights ───────────────────────────────────────────────────────
cg
$cnt
$cnt[[1]]
  subject         q1         q2           q3 q4 q5 q6 q7 q8 q9 cnt.weight
1       1 -0.1857563  0.5894552 -0.004878196  4  1  4  3  3  1          1
2       2 -1.3145390 -0.6319421  0.682163912  4  2  3  3  3  3          1
  within.cnt.weight final.sch.weight  uniqueID
1                 1                1 sch1_cnt1
2                 1                1 sch2_cnt1


$sch
$sch[[1]]
  subject          q1 q2 q3 q4 q5 sch.weight within.sch.weight final.stu.weight
1       1  1.50583778  3  1  1  2          1                 1                1
2       2  0.06801399  2  2  4  3          1                 1                1
3       3 -1.50350211  2  3  1  4          1                 1                1
4       4 -0.31483916  2  2  1  3          1                 1                1
5       5  0.92196178  2  2  1  4          1                 1                1
        uniqueID
1 stu1_sch1_cnt1
2 stu2_sch1_cnt1
3 stu3_sch1_cnt1
4 stu4_sch1_cnt1
5 stu5_sch1_cnt1

$sch[[2]]
  subject         q1 q2 q3 q4 q5 sch.weight within.sch.weight final.stu.weight
1       1  3.6056537  3  3  1  4          1                 1                1
2       2  0.9469375  3  3  2  4          1                 1                1
3       3 -0.2483334  3  3  4  4          1                 1                1
4       4  0.4508385  2  3  1  4          1                 1                1
5       5 -1.2610979  1  2  2  3          1                 1                1
        uniqueID
1 stu1_sch2_cnt1
2 stu2_sch2_cnt1
3 stu3_sch2_cnt1
4 stu4_sch2_cnt1
5 stu5_sch2_cnt1


attr(,"class")
[1] "lsasimcluster" "list"         

Example 6

The named vector below represents a sampling structure of 1 country, 2 schools, 5 students per school. In the example, the number of continuous variables have been specified as n_X = 10. Only 5 means have been expressed to correspond to the 10 continuous variables. That is, c_mean = c(0.3, 0.4, 0.5, 0.6, 0.7). The function will still run by recycling the means over the other, five, variables. In this case, a warning message that reads Warning: c_mean recycled to fit all continuous variables will be reported.

set.seed(4388)
n <- c(cnt = 1, sch = 2, stu = 5)
cg <- cluster_gen(n = n, n_X = 10, c_mean = c(0.3, 0.4, 0.5, 0.6, 0.7))
── Hierarchical structure ────────────────────────────────────────────────────────────────
cnt1
├─cnt1_sch1 (5 stus)
└─cnt1_sch2 (5 stus)
── Information on sampling weights ───────────────────────────────────────────────────────
Warning: c_mean recycled to fit all continuous variables
Warning: c_mean recycled to fit all continuous variables
Warning: c_mean recycled to fit all continuous variables
cg
$cnt
$cnt[[1]]
  subject        q1         q2         q3         q4           q5        q6         q7
1       1 0.1493738 -0.2941853 -0.1356861  1.0942713 0.0007041074 -0.403876 -1.8308171
2       2 1.4250256  0.4499239  0.3912278 -0.5754092 1.6994017416  1.321272  0.7349227
         q8         q9       q10 q11 q12 cnt.weight within.cnt.weight final.sch.weight
1 1.7664319 -0.5383132 1.3683602   1   1          1                 1                1
2 0.2770982  0.9291194 0.7627068   1   2          1                 1                1
   uniqueID
1 sch1_cnt1
2 sch2_cnt1


$sch
$sch[[1]]
  subject         q1           q2         q3         q4          q5         q6         q7
1       1  0.7107490 -0.068956415  1.6418185 -0.2682343  2.23323556  0.1442393  0.8616713
2       2 -0.5855985 -0.585710878 -0.5414412  0.2357256  0.07303423 -1.3597101 -0.9964523
3       3 -1.0835479  1.880217061 -0.1643727  0.1607227 -0.78261691  1.1395126 -0.2356088
4       4  0.5342037  0.007799633  1.0866804  1.1594587  1.03261534  0.2807431 -0.2725278
5       5 -0.2916682  0.884475474  2.3551113  0.6455583  1.48256259  0.6658749  0.7246589
          q8         q9          q10 q11 q12 q13 q14 sch.weight within.sch.weight
1  1.6934789  1.0571774  2.438611779   3   5   4   2          1                 1
2 -0.3013998  0.1720372  0.001787841   5   5   2   3          1                 1
3  0.8925784  0.6388118 -0.015964416   5   3   1   2          1                 1
4  1.8254067 -0.7224324  0.934325677   4   5   2   2          1                 1
5  0.2864523 -0.6233521  1.339058111   5   5   2   1          1                 1
  final.stu.weight       uniqueID
1                1 stu1_sch1_cnt1
2                1 stu2_sch1_cnt1
3                1 stu3_sch1_cnt1
4                1 stu4_sch1_cnt1
5                1 stu5_sch1_cnt1

$sch[[2]]
  subject         q1         q2          q3         q4          q5          q6        q7
1       1  0.8857965  0.6805171  1.70146414  0.8126441  1.21032818  2.24556963 0.5436328
2       2  0.4251834 -0.9716282 -0.14179050  1.6298518  0.69780010 -0.81250703 0.9940499
3       3 -2.6623576 -0.9154311  1.00495412 -2.4114249 -0.50579666 -2.79170273 0.4186921
4       4 -0.4276990  1.1312695 -0.03547911  2.1496012  0.08720867 -0.05207824 0.6496843
5       5  1.0640377  0.5922904 -0.15503371  0.2651547  2.00796094  1.47916002 0.8115288
            q8        q9          q10 q11 q12 q13 q14 q15 q16 q17 sch.weight
1  0.739390885 0.4754976 -0.006058309   5   1   4   4   2   2   3          1
2 -0.110809246 0.8357513  1.108207060   5   4   1   1   3   1   3          1
3 -0.274077470 2.3694774  2.700262947   5   5   5   2   3   1   3          1
4  0.007779354 0.6725442  0.339168074   5   1   2   2   1   1   2          1
5  2.031369897 0.1953666  1.566951833   5   4   5   1   2   1   3          1
  within.sch.weight final.stu.weight       uniqueID
1                 1                1 stu1_sch2_cnt1
2                 1                1 stu2_sch2_cnt1
3                 1                1 stu3_sch2_cnt1
4                 1                1 stu4_sch2_cnt1
5                 1                1 stu5_sch2_cnt1


attr(,"class")
[1] "lsasimcluster" "list"         

Example 7

The named vector below represents a sampling structure of 3 schools, 2 classes, and 5 students per class. Again, the naming of the vector is optional. However, n_X and sigma can be expressed as lists that coincide with the different levels (i.e., schools and classes). For example, n_X = c(1, 2) and sigma = list(.1, c(1, 2) can be represented to represent the school and classroom levels. Note that, sigma = list(.1, c(1, 2) means that at cluster 1 (class), the standard deviations are .1, where as the standard deviations for level 2 (class) are 1 and 2.

set.seed(4388)
n <- c(school = 3, class = 2, student = 5)
cg <- cluster_gen(n, n_X = c(1, 2), sigma = list(0.1, c(1, 2)))
── Hierarchical structure ────────────────────────────────────────────────────────────────
school1
├─school1_class1 (5 students)
└─school1_class2 (5 students)
school2
├─school2_class1 (5 students)
└─school2_class2 (5 students)
school3
├─school3_class1 (5 students)
└─school3_class2 (5 students)
── Information on sampling weights ───────────────────────────────────────────────────────
summary(cg)
──────────────────────────────────────────────────────────────────────────────────────────
[[1]]
       q1            q2      
 Min.   :-0.099338   1:5     
 Mean   : 0.007348   2:1     
 Max.   : 0.102284           
                     Prop.   
 Stddev.: 0.0795     1:0.8333
                     2:0.1667
                             
                             
          q1        q2
q1 1.0000000 0.7913169
q2 0.7913169 1.0000000
[[1]]
       q1                q2            q3       q4       q5       q6      
 Min.   :-2.3736   Min.   :-3.609443   2: 5     1:19     1:8      1: 9    
 Mean   :-0.1235   Mean   :-0.268586   3: 4     2:11     2:7      2:10    
 Max.   : 2.0970   Max.   : 3.514859   4: 4              4:9      4: 5    
                                       5:13     Prop.    3:6      3: 6    
 Stddev.: 1.1163   Stddev.: 2.0337     1: 4     1:0.6333                  
                                                2:0.3667 Prop.    Prop.   
                                       Prop.             1:0.2667 1:0.3   
                                       2:0.1667          2:0.2333 2:0.3333
                                       3:0.1333          4:0.3    4:0.1667
                                       4:0.1333          3:0.2    3:0.2   
                                       5:0.4333                           
                                       1:0.1333                           
                                                                          
                                                                          
            q1          q2          q3         q4          q5         q6
q1  1.00000000 -0.08248772  0.49946142  0.2345035 -0.01698463 -0.2893691
q2 -0.08248772  1.00000000 -0.09477988  0.4691688  0.20661211  0.1793382
q3  0.49946142 -0.09477988  1.00000000  0.3187024 -0.13300839  0.1824814
q4  0.23450350  0.46916880  0.31870236  1.0000000 -0.21498773  0.2768035
q5 -0.01698463  0.20661211 -0.13300839 -0.2149877  1.00000000 -0.1618769
q6 -0.28936909  0.17933817  0.18248136  0.2768035 -0.16187694  1.0000000

Example 8

The named vector below represents a sampling structure of 3 schools, 2 classes, and 5 students per class. Again, the naming of the vector is optional. However, c_mean can also be expressed as a list that coincide with the different levels (i.e., schools and classes). For example, c_mean = list(.1, c(0.55, 0.32) can be represented to represent the school and classroom levels. Note that, c_mean = list(.1, c(0.55, 0.32)) means that at cluster 1 (class), the means for the continuous variables are .1, where as the means for level 2 (class) are 0.55 and 0.32.

set.seed(4388)
n <- c(school = 3, class = 2, student = 5)
cg <- cluster_gen(n, n_X = c(1, 2), n_W = c(0, 1), c_mean = list(0.1, c(0.55, 0.32)))
── Hierarchical structure ────────────────────────────────────────────────────────────────
school1
├─school1_class1 (5 students)
└─school1_class2 (5 students)
school2
├─school2_class1 (5 students)
└─school2_class2 (5 students)
school3
├─school3_class1 (5 students)
└─school3_class2 (5 students)
── Information on sampling weights ───────────────────────────────────────────────────────
cg
$school
$school[[1]]
  subject         q1 school.weight within.school.weight final.class.weight       uniqueID
1       1 -0.2247919             1                    1                  1 class1_school1
2       2 -2.0902316             1                    1                  1 class2_school1

$school[[2]]
  subject        q1 school.weight within.school.weight final.class.weight       uniqueID
1       1 1.9632649             1                    1                  1 class1_school2
2       2 0.2743303             1                    1                  1 class2_school2

$school[[3]]
  subject        q1 school.weight within.school.weight final.class.weight       uniqueID
1       1  1.339111             1                    1                  1 class1_school3
2       2 -1.577978             1                    1                  1 class2_school3


$class
$class[[1]]
  subject        q1        q2 q3 class.weight within.class.weight final.student.weight
1       1 0.6939464  1.429263  3            1                   1                    1
2       2 0.6444333 -1.340612  2            1                   1                    1
3       3 0.7724895  1.191870  2            1                   1                    1
4       4 2.5861532  1.496156  3            1                   1                    1
5       5 0.9868058  1.428098  2            1                   1                    1
                 uniqueID
1 student1_class1_school1
2 student2_class1_school1
3 student3_class1_school1
4 student4_class1_school1
5 student5_class1_school1

$class[[2]]
  subject          q1         q2 q3 class.weight within.class.weight final.student.weight
1       1  0.04328771  0.9667577  1            1                   1                    1
2       2  0.85682751 -0.5343172  3            1                   1                    1
3       3  0.95461020  0.9208733  3            1                   1                    1
4       4  0.03384666  0.6000454  2            1                   1                    1
5       5 -0.01723126  2.6036897  1            1                   1                    1
                 uniqueID
1 student1_class2_school1
2 student2_class2_school1
3 student3_class2_school1
4 student4_class2_school1
5 student5_class2_school1

$class[[3]]
  subject         q1           q2 q3 class.weight within.class.weight
1       1  0.2135740 -0.230983361  3            1                   1
2       2  0.7499582  1.431284170  1            1                   1
3       3 -1.3288479  0.761635852  2            1                   1
4       4  1.7718949 -0.501747308  5            1                   1
5       5  0.6906895  0.004222373  3            1                   1
  final.student.weight                uniqueID
1                    1 student1_class1_school2
2                    1 student2_class1_school2
3                    1 student3_class1_school2
4                    1 student4_class1_school2
5                    1 student5_class1_school2

$class[[4]]
  subject           q1          q2 q3 class.weight within.class.weight
1       1  2.563471234 -0.05330786  3            1                   1
2       2 -1.059654042  0.32407999  1            1                   1
3       3 -0.336184584 -0.72432619  1            1                   1
4       4 -0.004385578  0.58409392  4            1                   1
5       5  0.296826906  0.10677686  1            1                   1
  final.student.weight                uniqueID
1                    1 student1_class2_school2
2                    1 student2_class2_school2
3                    1 student3_class2_school2
4                    1 student4_class2_school2
5                    1 student5_class2_school2

$class[[5]]
  subject         q1          q2 q3 class.weight within.class.weight final.student.weight
1       1 0.33690460 -1.19476433  1            1                   1                    1
2       2 1.56177909 -0.26130250  1            1                   1                    1
3       3 2.76962281 -1.28985141  1            1                   1                    1
4       4 1.29857289 -0.02952429  1            1                   1                    1
5       5 0.07510387  1.01647674  3            1                   1                    1
                 uniqueID
1 student1_class1_school3
2 student2_class1_school3
3 student3_class1_school3
4 student4_class1_school3
5 student5_class1_school3

$class[[6]]
  subject         q1          q2 q3 class.weight within.class.weight final.student.weight
1       1  0.1379774  0.99118261  2            1                   1                    1
2       2  2.1143383 -0.08084345  3            1                   1                    1
3       3  1.0878675  0.38597927  3            1                   1                    1
4       4  0.4066554  0.48029670  1            1                   1                    1
5       5 -0.4821055 -0.04994921  1            1                   1                    1
                 uniqueID
1 student1_class2_school3
2 student2_class2_school3
3 student3_class2_school3
4 student4_class2_school3
5 student5_class2_school3


attr(,"class")
[1] "lsasimcluster" "list"